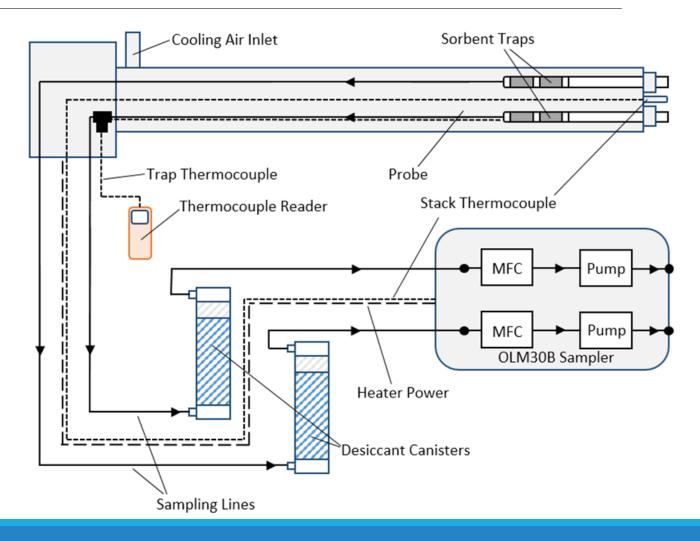
Ammonia Sorbent Traps – Brief Overview

OHIO LUMEX – JONATHAN CROSS

Trap Basics – Advantages over Existing Methods


- Designed to be superior alternatives to impinger train methods (M26, M29, M8A, CTM027)
 - Highly portable
 - Simpler Sampling Procedures
 - Performance-based QA/QC modeled after EPA 30B
 - No hazardous chemical exposure
 - Rugged enough for almost all sampling environments, not designed just for stacks

Trap Basics – Core Concepts


- Sampled in-situ
- Sampled in pairs
- At least two sections
 - Section 1 is primary capture, and can be spiked
 - Section 2 is breakthrough
- Must be sampled in specific ranges of temperature, flow, vacuum, and duration
- May have static pre-filters or other custom filters or sections
- May be sampled isokinetically
- Built-in QA/QC
 - Pair Agreement
 - Breakthrough
 - Spike Recovery

Trap Basics – Sampling Fundamentals: Equipment [1]

Standard OLM30B sampling system includes:

- 6-foot stainless steel probe
 - Two trap liners for 10mm OD traps
 - Cooling air inlet with 1" internal tube
 - Stack thermocouple
 - 750W heater
- Desiccant Canisters (CaSO₄ and Na₂CO₃)
 - Includes acid gas scrubber. Desiccant will change from blue to pink- needs to be replaced/refurbished periodically
- Sampling Console
 - Two mass flow controllers, two pumps
 - Range of flow from 0.02-2.0 lpm, common operating range is 0.2-1.0 lpm

Trap Basics – Sampling Fundamentals: Parameters/Variables

Source Gas Characteristics

- Estimated Concentration
 - Determines sampling duration
 - Captured mass = (concentration x volume)
- Temperature
 - Determines approach for temperature control
- Particulate Matter
 - Determines approach for filtration (static pre-filters vs. sintered filter tips vs. no filtration)
- Moisture
 - Special attention must be paid to sampling technique, and a probe shield may be necessary in the stack

Sampling Considerations

Trap Type

•

- Most important consideration. Each trap type comes with its own set of parameters
- Temperature
 - Exceeding nominal range could result in breakthrough, too low could result in condensation. NH₃ sorbent traps require a specific sampling temperature.
- Flow Rate
 - Determined by trap type, exceeding could result in high vacuum and breakthrough
- Vacuum
 - Should not be too high (varies with flow rate and trap type)

Trap Basics – Measurement Units

- Ohio Lumex generally calibrates by mass, so raw data is usually in units of mass.
- Concentration is calculated as $\mu g/L$, ng/L, or $\mu g/m^3$
 - All easy to convert from one to another
- For some methods, **ppmv** is the most convenient way to express concentration
- Note: With mass flow controllers, you do not need to correct for pressure or temperature

Concentration = mass / volume

$$C_{ppmv} = C_{\mu g/L} * molar volume / molar mass$$

(Molar volume = 24.056 at 1atm and 20°C)

NH₃ Traps – Overview [1]

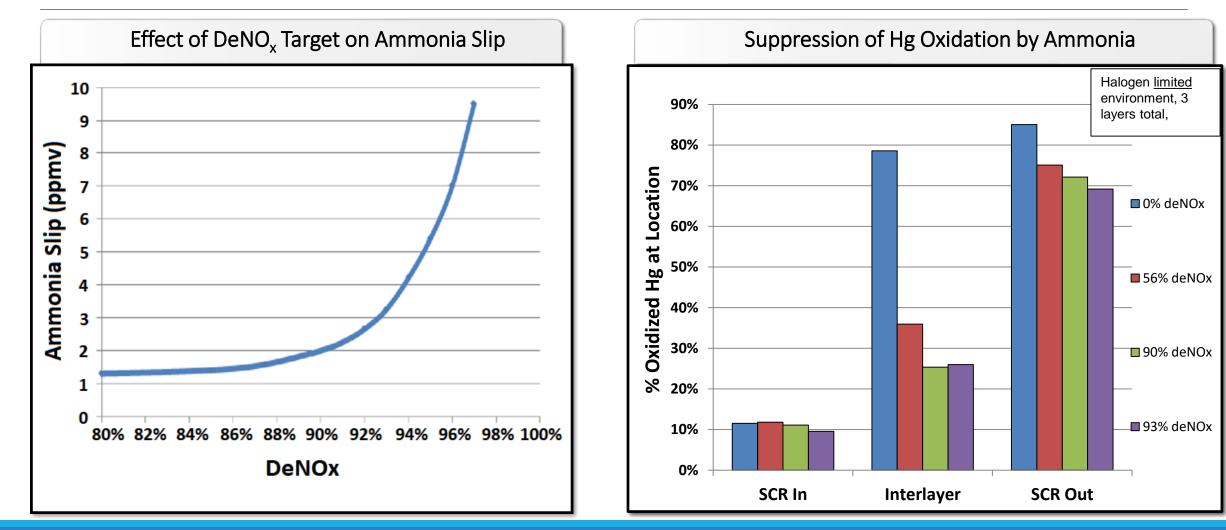
Method Status

- Well-developed for engineering purposes
- Have been used across a wide range of sources

Applications

- Comparing predicted ammonia slip (from DeNO_x calculations) with real ammonia slip
- Studying suppression of Hg oxidation by ammonia

Competing Methods


NII | NII NII NII || NI || NI || NI OL215193

• CTM-027

• EPA Method 320

NH₃ Traps – Overview [2]

NH₃ Traps – Analyte Chemistry Considerations

- Ammonia is basic it will react with acid gases in combustion gas to form ammonium salts such as ammonium bisulfate, ammonium sulfate, ammonium chloride, etc.
- Ammonium compounds are volatile, so traps must be sampled at very low temperatures to prevent breakthrough – we force condensation to occur
- All NH₃ from condensation is included in the total

NH₃ Traps – Sampling Equipment

- Temperature
 - NH₃ traps have the lowest sampling temperature of all traps – the fine temperature control kit is absolutely necessary

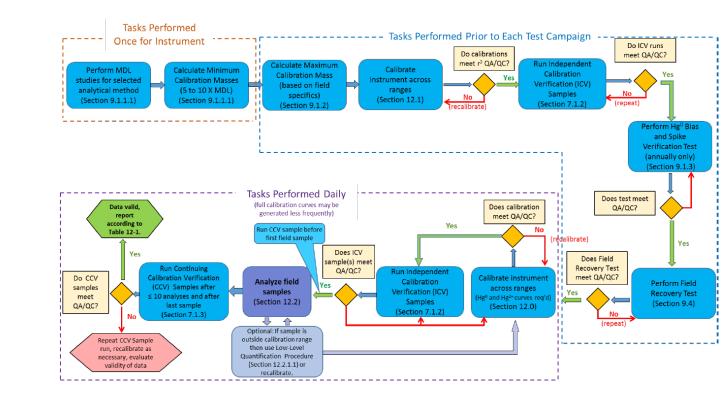
• Particulate

- Use static pre-filters or sintered steel filter tips success has been had with both (static pre-filters are preferred)
- Isokinetic sampling should not be necessary
 - If any aerosols are present in the flue gas, they are ammonium salts – we don't want to include those unless they're formed INSIDE the trap

NH₃ Traps – Sampling Parameters

PARAMETER	RANGE
Temperature (°C)	100-120
Flow Rate (lpm)	0.25-1.0
Sample Volume (liters)	15-30
Isokinetic Sampling Required?	NO

NH₃ Traps – Analysis Instrumentation


- Ion Chromatography
 - Dissolve sections in water
 - Analyze using a cation column (vs. the anion column used for Cl⁻ and Br⁻)
 - Analysis done in batches and takes at least 1 day
 - Not a destructive method, re-analysis is possible
- Error/Uncertainty
 - Expected RSD is 5%, allowable error is 10%, which is verified by calibration criteria, ICV, and CCV
- Measurement Limits (based on 30 minute run):
 - MDL \approx .03 µg/L LOQ \approx 0.3 µg/L

NH₃ Traps – Validation Strategy

- Well-tested for engineering purposes.
- Recommend spiked/unspiked pairs to verify measurement data quality – follow 30B QA/QC approach
- Relies on self-validating criteria, as there are limited comparisons
 - No tests against CTM-027, limited comparison against IR
 - Need more comparison data

Jonathan Cross QA/QC Manager and Research Scientist Ohio Lumex Co. Inc. +1(330)888-9071 jonathan.cross@ohiolumex.com Ohio Lumex Co. Inc. 30350 Bruce Industrial Parkway, Solon, OH 44139 Toll Free: (888) 876-2611 Ph: (440)264-2500, Fax: (440)264-2501 mail@ohiolumex.com

